The role of cytosolic alpha-glucan phosphorylase in maltose metabolism and the comparison of amylomaltase in Arabidopsis and Escherichia coli.
نویسندگان
چکیده
Transitory starch of leaves is broken down hydrolytically, making maltose the predominant form of carbon exported from chloroplasts at night. Maltose metabolism in the cytoplasm of Escherichia coli requires amylomaltase (MalQ) and maltodextrin phosphorylase (MalP). Possible orthologs of MalQ and MalP in the cytosol of Arabidopsis (Arabidopsis thaliana) were proposed as disproportionating enzyme (DPE2, At2g40840) and alpha-glucan phosphorylase (AtPHS2, At3g46970). In this article, we measured the activities of recombinant DPE2 and AtPHS2 proteins with various substrates; we show that maltose and a highly branched, soluble heteroglycan (SHG) are excellent substrates for DPE2 and propose that a SHG is the in vivo substrate for DPE2 and AtPHS2. In E. coli, MalQ and MalP preferentially use smaller maltodextrins (G(3)-G(7)) and we suggest that MalQ and DPE2 have similar, but nonidentical, roles in maltose metabolism. To study this, we complemented a MalQ(-) E. coli strain with DPE2 and found that the rescue was not complete. To investigate the role of AtPHS2 in maltose metabolism, we characterized a T-DNA insertion line of the AtPHS2 gene. The nighttime maltose level increased 4 times in the Atphs2-1 mutant. The comparison of maltose metabolism in Arabidopsis with that in E. coli and the comparison of the maltose level in plants lacking DPE2 or AtPHS2 indicate that an alternative route to metabolize the glucan residues in SHG exists. Other plant species also contain SHG, DPE2, and alpha-glucan phosphorylase, so this pathway for maltose metabolism may be widespread among plants.
منابع مشابه
Temperature sensitivity of maltose utilization and lambda resistance in Escherichia coli B.
Escherichia coli B strains that have acquired the malB region from E. coli K-12 are able to utilize maltose and to adsorb phage lambda when grown at 30 C, but when grown at 40 C they do not absorb phage lambda and are devoid of amylomaltase activity. These Mal(ts) Lam(ts) cells can be mutated or transduced to become able to grow on maltose at 40 C, but they still have no detectable amylomaltase...
متن کاملThe maltodextrin system of Escherichia coli: metabolism and transport.
The maltose/maltodextrin regulon of Escherichia coli consists of 10 genes which encode a binding protein-dependent ABC transporter and four enzymes acting on maltodextrins. All mal genes are controlled by MalT, a transcriptional activator that is exclusively activated by maltotriose. By the action of amylomaltase, we prepared uniformly labeled [(14)C]maltodextrins from maltose up to maltoheptao...
متن کاملGlucose- and glucokinase-controlled mal gene expression in Escherichia coli.
MalT is the central transcriptional activator of all mal genes in Escherichia coli. Its activity is controlled by the inducer maltotriose. It can be inhibited by the interaction with certain proteins, and its expression can be controlled. We report here a novel aspect of mal gene regulation: the effect of cytoplasmic glucose and glucokinase (Glk) on the activity and the expression of MalT. Amyl...
متن کاملDirect utilization of maltose by Escherichia coli.
In the course of genetic studies, a mutant strain of Escherichia coli was developed which is characterized by rapid fermentation and oxidat,ion of maltose but not of glucose. Since this mutant offered an excellent opportunity to invest,igate the so called direct utilization of disaccharides (l), a study of the enzyme systems involved in maltose decomposition was undertaken. Experiments with dry...
متن کاملbeta-Maltose is the metabolically active anomer of maltose during transitory starch degradation.
Maltose is the major form of carbon exported from the chloroplast at night as a result of transitory starch breakdown. Maltose exists as an alpha- or beta-anomer. We developed an enzymatic technique for distinguishing between the two anomers of maltose and tested the accuracy and specificity of this technique using beta-maltose liberated from maltoheptose by beta-amylase. This technique was use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 142 3 شماره
صفحات -
تاریخ انتشار 2006